

CSS Doug Dotson

4-5 June 1997

ECS Context

410-IT-001-001

Universal References

- → UR Requirements
- → Overview Design

UR Driving Requirements

- → Provide a mechanism to access ECS object instances through logical references
- Access object instances which can exist anywhere in the system
- + Object instances can be any ECS object
- Accommodate nesting of identifiers
 - For example Advertising Service providing references to data/services

UR Driving Requirements

- Support multiple formats
 - C++ objects and ASCII string
- Infinite persistence not required
 - If object no longer exists, UR is invalid
- Unique within application types across DAACs

UR Solution Overview

- Framework Features
 - Objects create URs for themselves
 - URs used to reconstitute/access original object
 - Content of URs is specific to the class of object
 - Supports evolution
 - Allows abstraction and inheritance to accommodate new objects
 - Principles are based on established design patterns (Memento and Object Factory)

UR Solution Overview

UR Framework Context

- Who Uses the UR Framework?
 - Earth Science Data/Services e.g., EDSTs
 - Clients connecting to servers e.g., Sessions
 - Advertisements
 - Subscriptions

Register New Event

- 1. Subscription Client process create and register a new event.
- 2. Subscription server store the event and qualifier names persistantly
- 3. Subscription server assign a event ID and return to client.
- 4. Client use GetEventID() to get the ID.

410-IT-001-001

Submitting Subscription

- 1. A user uses the GUI interface to submit a subscription, providing all necessary data.
- 2. The subscription client process is invoked.
- 3. Subscription server receives the submit request and validates the qualifier.
- 4. Stores it in a persistant store.
- 5. Assigns and return a unique subscription ID to subscriber.

NASA'S MISSION TO PLANET EARTH WEIS'S NOLLYBOUNDAY EOS EARTH OBSERVING SYSTEM

Subscription Server

6 IPC/Email Notification
Subscriber

3 identity and retrieve qualified subscriptions

- 1. Client process instantiates EcClEvent using the event ID. (create a known event) EcClEvent myEvent(EventID); and invokes the trigger method. myEvent.Trigger(GlParameterlist);
- 2. Subscription Server create an async request object to process subscriptions. Acknownledgement return to client.
- 3. Subscription Server retrieves qualified subscriptions and matches qualifiers against actuals provided by Event Producer.
- 4, 5. Process action specified in subscription.
- 6. Email/IPC notification to subscriber.

Subscription Server Context

- **+ ECS Subscription Event Producers**
 - Data Servers
 - Advertising Service
 - Data Dictionary Service
- ECS Subscribers
 - Client on behalf of science users
 - Planning
 - Operator Interfaces on behalf of operators

Subscription Server Context (continued)

- Examples of Events:
 - Science Granule Insertion
 - Metadata Update
 - New Advertisement
 - New Schema Export to DDICT
- Examples of Actions:
 - E-mail / IPC
 - Acquire data (data push/pull)